skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Innes, Peter A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available December 1, 2026
  2. Regulation of gene expression is a critical link between genotype and phenotype explaining substantial heritable variation within species. However, we are only beginning to understand the ways that specific gene regulatory mechanisms contribute to adaptive divergence of populations. In plants, the post-transcriptional regulatory mechanism of alternative splicing (AS) plays an important role in both development and abiotic stress response, making it a compelling potential target of natural selection. AS allows organisms to generate multiple different transcripts/proteins from a single gene and thus may provide a source of evolutionary novelty. Here, we examine whether variation in alternative splicing and gene expression levels might contribute to adaptation and incipient speciation of dune-adapted prairie sunflowers in Great Sand Dunes National Park, Colorado, USA. We conducted a common garden experiment to assess transcriptomic variation among ecotypes and analyzed differential expression, differential splicing, and gene coexpression. We show that individual genes are strongly differentiated for both transcript level and alternative isoform proportions, even when grown in a common environment, and that gene coexpression networks are disrupted between ecotypes. Furthermore, we examined how genome-wide patterns of sequence divergence correspond to divergence in transcript levels and isoform proportions and find evidence for both cis and trans-regulation. Together, our results emphasize that alternative splicing has been an underappreciated mechanism providing source material for natural selection at short evolutionary time scales. 
    more » « less